第三讲 列举法

解应用题时,为了解题的方便,把问题分为不重复、不遗漏的有限情况,一一列举出来加以分析、解决,最终达到解决整个问题的目的。这种分析、解决问题的方法叫做列举法。列举法也叫枚举法或穷举法。

用列举法解应用题时,往往把题中的条件以列表的形式排列起来,有时也要画图。

例1 一本书共100页,在排页码时要用多少个数字是6的铅字?(适于三年级程度)

解:把个位是6和十位是6的数一个一个地列举出来,数一数。

个位是6的数字有:6、16、26、36、46、56、66、76、86、96,共10个。

十位是6的数字有:60、61、62、63、64、65、66、67、68、69,共10个。

10+10=20(个)

答:在排页码时要用20个数字是6的铅字。

*例2从A市到B市有3条路,从B市到C市有两条路。从A市经过B市到C市有几种走法?(适于三年级程度)

解:作图3-1数字圆圈符号1到30,然后把每一种走法一一列举出来。

数字圆圈符号1到30_特殊符号圆圈数字_圆圈里数字符号

第一种走法:A ① B ④ C

第二种走法:A ① B ⑤ C

第三种走法:A ② B ④ C

第四种走法:A ② B ⑤ C

第五种走法:A ③ B ④ C

第六种走法:A ③ B ⑤ C

答:从A市经过B市到C市共有6种走法。

*例3 9○13○7=100

14○2○5=□

把+、-、×、÷四种运算符号分别填在适当的圆圈中(每种运算符号只能用一次),并在长方形中填上适当的整数,使上面的两个等式都成立。这时长方形中的数是几?(适于四年级程度)

解:把+、-、×、÷四种运算符号填在四个圆圈里,有许多不同的填法,要是逐一讨论怎样填会特别麻烦。如果用些简单的推理,排除不可能的填法,就能使问题得到简捷的解答。

先看第一个式子:9○13○7=100

如果在两个圆圈内填上“÷”号,等式右端就要出现小于100的分数;如果在两个圆圈内仅填“+”、“-”号,等式右端得出的数也小于100,所以在两个圆圈内不能同时填“÷”号,也不能同时填“+”、“-”号。

要是在等式的一个圆圈中填入“×”号,另一个圆圈中填入适当的符号就容易使等式右端得出100。9×13-7=117-7=110,未凑出100。如果在两个圈中分别填入“+”和“×”号,就会凑出100了。

9+13×7=100

再看第二个式子:14○2○5=□

上面已经用过四个运算符号中的两个,只剩下“÷”号和“-”号了。如果在第一个圆圈内填上“÷”号, 14÷2得到整数,所以:

14÷2-5=2

即长方形中的数是2。

*例4印刷工人在排印一本书的页码时共用1890个数码,这本书有多少页?(适于四年级程度)

解:(1)数码一共有10个:0、1、2……8、9。0不能用于表示页码数字圆圈符号1到30,所以页码是一位数的页有9页,用数码9个。

(2)页码是两位数的从第10页到第99页。因为99-9=90,所以,页码是两位数的页有90页,用数码:

2×90=180(个)

(3)还剩下的数码:

———END———
限 时 特 惠: 本站每日持续更新海量各大内部创业教程,一年会员只需98元,全站资源免费下载 点击查看详情
站 长 微 信: bear68899

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注